
Towards Open-World Grasping with
Large Vision-Language Models

Georgios Tziafas
Department of Artificial Intelligence

University of Groningen
the Netherlands

g.t.tziafas@rug.nl

Hamidreza Kasaei
Department of Artificial Intelligence

University of Groningen
the Netherlands

hamidreza.kasaei@rug.nl

Abstract: The ability to grasp objects in-the-wild from open-ended language
instructions constitutes a fundamental challenge in robotics. An open-world
grasping system should be able to combine high-level contextual with low-level
physical-geometric reasoning in order to be applicable in arbitrary scenarios. Re-
cent works exploit the web-scale knowledge inherent in large language models
(LLMs) to plan and reason in robotic context, but rely on external vision and
action models to ground such knowledge into the environment and parameter-
ize actuation. This setup suffers from two major bottlenecks: a) the LLM’s rea-
soning capacity is constrained by the quality of visual grounding, and b) LLMs
do not contain low-level spatial understanding of the world, which is essential
for grasping in contact-rich scenarios. In this work we demonstrate that mod-
ern vision-language models (VLMs) are capable of tackling such limitations, as
they are implicitly grounded and can jointly reason about semantics and geome-
try. We propose OWG, an open-world grasping pipeline that combines VLMs with
segmentation and grasp synthesis models to unlock grounded world understand-
ing in three stages: open-ended referring segmentation, grounded grasp planning
and grasp ranking via contact reasoning, all of which can be applied zero-shot
via suitable visual prompting mechanisms. We conduct extensive evaluation in
cluttered indoor scene datasets to showcase OWG’s robustness in grounding from
open-ended language, as well as open-world robotic grasping experiments in both
simulation and hardware that demonstrate superior performance compared to pre-
vious supervised and zero-shot LLM-based methods. Project material is available
at https://gtziafas.github.io/OWG project/.
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1 Introduction Can you get me something for my child to play with?
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Which object corresponds to
something a child would play with?

What is the best way to grasp the
object in order to avoid collisions?
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Figure 1: Challenges of open-world grasping tack-
led with VLMs. The overall pipeline combines
VLMs with segmentation and grasp synthesis mod-
els to ground open-ended language instructions plan
and reason about how to grasp the desired object.

Following grasping instructions from free-form
natural language in open-ended environments is a
multi-faceted problem, posing several challenges
to robot agents. Consider the example of Fig. 1:
The robot has to decipher the semantics of the
user instruction (i.e., “what would a child want
to play with?”), recognize the appearing objects
and ground the target (i.e., the white toy), reason
about the feasibility of the grasp to generate an ap-
propriate plan (i.e., first remove the blocking juice
box), and finally select a suitable grasp based on
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the object geometry and potential collisions. It becomes clear that to deal with the full scope of
open-world grasping, agents should integrate high-level semantic with low-level physical-geometric
reasoning, while doing so in a generalizable fashion.

In recent years, Large Language Models (LLMs) [1, 2, 3, 4, 5], have emerged as a new paradigm
in robotics and embodied AI, due to their emergent general knowledge, commonsense reasoning
and semantic understanding of the world [6, 7, 8, 9, 10]. This has led to a multitude of LLM-based
approaches for zero-shot robotic task planning [11, 12, 13, 14, 15], navigation [16, 17, 18, 19] and
manipulation [20, 21, 22, 23, 24, 25], where the LLM decomposes a high-level language instruction
into a sequence of steps, therefore tackling complex, long-horizon tasks by composing primitive
skills. However, a notorious limitation of LLMs is their lack of world grounding — they cannot di-
rectly reason about the agent and environment physical state [26], and lack deep knowledge when it
comes to low-level, physical properties, such as object shapes, precise 3D geometry, contact physics
and embodiment constraints [27]. Even when equipped with external visual modules for perceiving
the world, the amount of information accessed by the LLM is bottlenecked by the visual model’s
interface (e.g. open-vocabulary detectors [28, 29, 30] cannot reason about object relations such as
contacts). Recently, Large Vision-Language Models (LVLMs) integrate visual understanding and
language generation into a unified stream, allowing direct incorporation of perceptual information
into the semantic knowledge acquired from language [31, 32, 33, 34]. Preliminary explorations
with LVLMs [35] have illustrated two intriguing phenomena, namely: a) by combining LVLMs
with segmentation models and constructing suitable visual prompts, LVLMs can unleash extraor-
dinary open-ended visual grounding capabilities [26], and b) effective prompting strategies like
chain-of-thought [36] and in-context examples [1] seem to also emerge in LVLMs. Motivated by
these results, we perform an in-depth study of the potential contributions of LVLMs in open-ended
robotic grasping. In this paper, we propose Open World Grasper (OWG): an integrated approach
that is applicable zero-shot for grasping in open-ended environments, object catalogs and language
instructions. OWG combines LVLMs with segmentation [37] and grasp synthesis models [38],
which supplement the LVLM’s semantic knowledge with low-level dense spatial inference. OWG
decomposes the task in three stages: open-ended referring segmentation, where the target object is
grounded from open-ended language, (ii) grounded grasp planning, where the agent reasons about
the feasibility of grasping the target and proposes a next action, and (iii) grasp ranking, where the
LVLM ranks grasp proposals generated from the grasp synthesizer based on potential contacts.

In summary, our contributions are threefold: a) we propose a novel algorithm for grasping from
open-ended language using LVLMs, b) we conduct extensive comparisons and ablation studies in
real cluttered indoor scenes data [39, 40], where we show that our prompting strategies enable
LVLMs to ground arbitrary natural language queries, such as open-vocabulary object descriptions,
referring expressions and user-affordances, while outperforming previous zero-shot vision-language
models by a significant margin, and c) we integrate OWG with a robot framework and conduct
experiments both in simulation and in the real world, where we illustrate that LVLMs can advance
the performance of zero-shot approaches in the open-world setup.

2 Related Works

Visual Prompting for Vision-Language Models Several works investigate how to bypass fine-
tuning VLMs, instead relying on overlaying visual/semantic information to the input frame, a prac-
tise commonly referred to as visual prompting. Colorful prompting tuning (CPT) is the first work
that paints image regions with different colors and uses masked language models to “fill the blanks”
[41]. Other methods try to use CLIP [42] by measuring the similarity between a visual prompt and
a set of text concepts. RedCircle [43] draws a red circle on an image, forcing CLIP to focus on a
specific region. FGVP [44] further enhances the prompt by specifically segmenting and highlight-
ing target objects. Recent works explore visual prompting strategies for LVLMs such as GPT-4v, by
drawing arrows and pointers [35] or highlighting object regions and overlaying numeric IDs [26]. In
the same vein, in this work we prompt GPT-4v to reason about visual context while being grounded
to specific spatial elements of the image, such as objects, regions and grasps.
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LLMs/LVLMs in Robotics Recent efforts use LLMs as an initialization for vision-language-action
models [45, 46], fine-tuned in robot demonstration data with auxiliary VQA tasks [46, 45, 47]. Such
end-to-end approaches require prohibitive resources to reproduce, while still struggling to general-
ize out-of-distribution, due to the lack of large-scale demonstration datasets. Alternatively, modular
approaches invest on the current capabilities of LLMs to decompose language instructions into a
sequence of high-level robot skills [48, 11, 12, 22, 14], or low-level Python programs composing
external vision and action models as APIs [13, 23, 21, 22, 25, 49]. Such approaches mostly focus
on the task planning problem, showcasing that the world knowledge built in LLMs enables zero-
shot task decomposition, but require external modules [28, 29, 30, 42] to ground plan steps to the
environment and reason about the scene. Recent works study the potential of LVLMs for inherently
grounded task planning [27, 50, 51]. In [50], the authors use GPT-4v to map videos of human per-
forming tasks into symbolic plans, but do not consider it for downstream applications. VILA [27]
feeds observation images with text prompts to an LVLM to plan without relying on external detec-
tors. However, produced plans are expressed entirely in language and assume an already obtained
skill library to execute the plans. MOKA [51] proposes a keypoint-based visual prompting scheme
to parameterize low-level motions, but still relies on external vision models to perform grounding,
and does not consider referring expressions and clutter.. In our work, we use visual marker prompt-
ing to leverage LVLMs for the full stack of the open-world grasping pipeline, including grounding
referring expressions, task planning and low-level motion parameterization via grasp ranking.

Semantics-informed Grasping Most research on grasping assumes golden grounding, i.e., the
target object is already segmented from the input scene. Instead, they focus on proposing 4-
DoF grasps from RGB-D views [52, 53, 54, 38, 55, 56, 57], or 6-DoF poses from 3D data
[58, 59, 60, 61, 62, 63, 64]. Recently, several works study language-guided grasping in an end-
to-end fashion, where a language model encodes the user instruction to provide conditioning for
grasping [65, 66, 39]. However, related methods typically train language-conditioned graspers that
struggle to generalize outside the training distribution. Another similar line of works is that of
task-oriented grasping [67, 68], where recent LLM-based methods [69] exploit the vast knowledge
of LLMs to provide additional semantic context for selecting task-oriented grasps, but do not con-
sider the grounding problem, clutter or referring expressions. Further, none of the above approaches
consider the planning aspect, typically providing open-loop graspers that do not incorporate envi-
ronment feedback. In this work, we leverage LVLMs to orchestrate a pipeline for language-guided
grasping in clutter, exploiting it’s multimodal nature to jointly ground, reason and plan.

3 Method

3.1 Prerequisites and Problem Statement

Large Vision-Language Models VLMs receive a set of RGB images of size H ×W : I1:M , I ∈
RH×W×3 and a sequence of text tokens T , and generate a text sequence Y of length L: Y .

= w1:L =
{w1, . . . , wL} from a fixed token vocabulary wi ∈ W , such that: Y = F(I1:M , T ). The images-text
pair input X = ⟨I1:M , T ⟩ is referred to as the prompt, with the text component T typically being a
user instruction or question that primes the VLM for a specific task.

Grasp Representations We represent a grasp via an end-effector gripper pose G, with G ∈ R4 for
4-DoF and G ∈ R6 for 6-DoF grasping. Such representation contains a 3D position and either a yaw
rotation or a full SO(3) orientation for 4-DoF and 6-DoF respectively. 4-DoF grasps assume that the
approach vector is calibrated with the camera extrinsics, and hence can be directly drawn as rectan-
gles in the 2D image plane (see bottom of Fig. 2), which happens to be a favorable representation for
VLMs, as grasp candidates can be interpreted as part of the input image prompt. A motion primitive
is invoked to move the arm to the desired gripper pose G, e.g. via inverse-kinematics solvers. 1

1More sophisticated motion planning algorithms, e.g. with integrated obstacle avoidance, can be utilized
orthogonal to our approach.
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Large
Multimodal
Model
(GPT-4v)

Current observation

 CoT: Grasp near the marker body, avoid the can,
Ranked grasps:  [3, 4, 2, 1, 5, 6]

I feel like tomato
soup tonight

User Instruction

Segmentation Markers

Region of Interest Grasp Markers

World state after
robot execution

Update observation

CoT: Looking for a soup, potentially
a canned item.
Target object:   [6]

CoT: The marker [1] is blocking the can  [6].
Plan: 
        1. remove [1]
        2. pick  [6]

Figure 2: Overview of OWG: Given a user instruction and an observation, OWG first invokes a segmentation
model to recover pixel-level masks, and overlays them with numeric IDs as visual markers in a new image. Then
the VLM subsequently activates three stages: (i) grounding the target object from the language expression in
the marked image, (ii) planning on whether it should grasp the target or remove a surrounding object, and
(iii) invoking a grasp synthesis model to generate grasps and ranking them according to the object’s shape and
neighbouring information. The best grasp pose (highlighted here in pink - not part of the prompt) is executed
and the observation is updated for a new run, until the target object is grasped. Best viewed in color and zoom.

Problem Statement Given an RGB-D observation It ∈ RH×W×3, Dt ∈ RH×W and an open-
ended language query T , which conveys an instruction to grasp a target object, the goal of OWG
is to provide a policy π(at | It,Dt, T ). Assuming n ∈ {1, . . . , N} the N objects that appear in
the scene and n∗ the target object, then at each time step t, the policy outputs a pose for grasping
an object: at = Gt(n), Gt(n) = G(n, It,Dt), t = 1, . . . , T , where the last step T always maps
to grasping the target object: aT = GT (n

∗). We refer to the function G as the grasp generation
function, which corresponds to a pretrained grasp synthesis network from RGB-D views [38] 2 We
note that our policy π outputs directly the actual gripper pose G = G(n), and the object-centric
abstraction n is used implicitly (details in next sections).

We wish to highlight that in most grasp synthesis pipelines [38, 55, 53, 57, 56], it’s always T = 1 and
a1 = G1(n

∗), which corresponds to an open-loop policy attempting to grasp the object of interest
once. Our formulation for T > 1 allows the VLM to close the loop by re-running after each step,
which enables visual feedback for planning and recovery from failures / external disturbances.

3.2 Pipeline Overview

OWG combines VLMs with pretrained 2D instance segmentation and grasp synthesis models. Seg-
mentation methods like SAM [37] and its variants [70, 71] have demonstrated impressive zero-shot
performane. Similarly, view-based grasp synthesis networks [56, 55, 38, 53, 57] have also shown to
be transferable to unseen content, as they are trained without assumptions of objectness or semantics
in their training objectives. The zero-shot capabilities of these models for low-level dense spatial
tasks is complementary to the high-level semantic reasoning capabilities of VLMs, while both use
images as the underlying representation, hence offering a very attractive coupling for tackling the
open-world grasping problem. The overall pipeline can be decomposed in three subsequent stages:
(i) open-ended referring segmentation, (ii) grounded grasp planning, and (iii) grasp generation and
ranking. A schematic of OWG is shown in Fig. 2 and described formally in Algorithm 1. Prompt
implementation details can be found in Appendix A.

Open-ended referring segmentation In this stage, the target object of interest must be segmented
from the input RGB image It given the instruction T . To enable this, we first run our segmentation
model S : RH×W×3 → {0, 1}H×W and then draw the N generated masks M1:N = S(It) with
additional visual markers in a new frame Imt . This step aims to exploit the VLM’s OCR capabilities

2Other point-cloud [59] or voxel-based [62] methods for 3D grasp generation can be utilized orthogonal to
our approach, which uses single RGB-D view.
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ROpen-Ended Referring Segmentation

User: I broke my mug, can you get me something to fix it?
GPT-4v: To find the object that best matches the description: "I broke my
mug, can you get me something to fix it?", I will look for an item that could be
used to repair a broken mug, which would most likely be some form of
adhesive. In the first image, there are several items on the table, but the one that
stands out as the potential adhesive is the tube near the bottom of the image.
This tube could be a glue or a similar substance that could be used to fix a
broken mug. In the second image, the tube is marked with the color blue and
has the ID number 3 inside a black rectangle.
My final answer is: [3]

RGrounded Grasp Planning

Prompt: [...] determine a plan to ensure a target object is graspable. [...]
Respond with a numbered list of objects to manipulate, by referring to their
numeric IDs [...]. Task instruction: "Grasp object [9]".
GPT-4v: To grasp [9], it appears that objects [17] and [6] are directly breaking
access to it. These object must be removed first to clear the way for a
successful grasp of [9].
My final answer is:
     1. remove [17]
     2. remove [6]
     3. pick [9]

RGrasp Ranking via Contact Reasoning

Prompt: [...] Provide a list of the grasp IDs sorted from best to worst.
GPT-4v: The object of interest outlined with a red line appears to be a
banana [...]. The grasp poses closest to surrounding object are [1], [2]
and [9] [...]. Good grasp poses are those whose centers are inside the
body of the banana and not close to surrounding objects. These would
likely be: [4], [5], [6] and [7]. The next best would be those that are
inside the body but closer to the edges, which might be [3] and [8]. The
least favorable grasp poses are the closest to surrounding objects or at
the very ends of the banana, which are [1], [2] and [9].
My final answer is: [4, 5, 6, 7, 3, 8, 1, 2, 9]

Figure 3: Example GPT-4v responses (from left to right): a) Open-ended referring segmentation, i.e., ground-
ing, b) Grounded grasp planning, and c) Grasp ranking via contact reasoning. We omit parts of the prompt and
response for brievity. Full prompts in Appendix A and more example responses in Appendix E.

and link each segment in the frame with a unique ID that the VLM can use to refer to it. After
augmenting the image with visual markers, we pass the prompt < It, Imt , T > to the VLM. We
refer to this VLM generation as Fground, such that: n∗ = Fground(It, Imt , T ) where n∗ the target
object and Mn∗ its segmentation mask. We note that T can contain free-form natural language
referring to a target object, such as open object descriptions, object relations, affordances etc.

Algorithm 1: Open-World Grasper (OWG)

Require: Initial observation (I1,D1), language instruc-
tion T , segmentor S(·), grasp generator G(·), VLMs
Fground,Fplan,Frank

Ensure: n∗ ̸= ñ
t← 1
while n∗ ̸= ñ do

Generate segmentation masks M1:N with S(It)
Draw visual markers from M1:N in a new frame Imt
n∗ ← Fground(It, Imt , T ) ▷ Object of interest
ñ← Fplan(Imt , n∗)[0] ▷ Next object to grasp
G1:K ← G(It,Dt,Mñ) ▷ Grasp generation
Crop RoI and draw grasps cñ′ from It, Mñ, G1:K

G′1:K ← Frank(cñ′) ▷ Grasp ranking
Execute grasp G′1
t← t+ 1 ▷ Update observation It, Dt

end while

Grounded grasp planning This
stage attempts to leverage VLM’s vi-
sual reasoning capabilities in order to
produce a plan that maximizes the
chances that the target object n∗ is
graspable. If the target object is
blocked by neighboring objects, the
agent should remove them first by
picking them an placing them in free
tabletop space. Similar to [27], we
construct a text prompt that describes
these two options (i.e., remove neigh-
bor or pick target) as primitive actions
for the VLM to compose plans from.
We provide the marked image Imt to-
gether with the target object n∗ (from
the previous grounding stage) to de-
termine a plan: p1:T = Fplan(Imt , n∗), pτ ∈ {1, . . . , N}. Each pτ corresponds to the decision to
grasp the object with marker ID n ∈ {1, . . . , N}. As motivated earlier, in order to close the loop,
we take the target of the first step of the plan ñ = p1 and move to the grasping stage of our pipeline.

Grasp generation and ranking After determining the current object to grasp ñ, we invoke our
grasp synthesis model G to generate grasp proposals. To that end, we element-wise multiply the
mask Mñ with the RGB-D observation, thus isolating only object n∗ in the input frames: Ĩt =
It⊙Mñ, D̃t = Dt⊙Mñ. The grasp synthesis network outputs pixel-level quality, angle and width
masks which can be directly transformed to 4-DoF grasps G1:K = G(Ĩt, D̃t) [56, 55, 38], where K
the total number of grasp proposals. Then, we crop a small region of interest cñ around the bounding
box of the segment in the frame It, from its mask Mñ. We draw the grasp proposals G1:K as 2D
grasp rectangles within the cropped image cñ and annotate each one with a numeric ID marker,
similar to the grounding prompt. We refer to the marked cropped frame as c′ñ. Then, we prompt the
VLM to rank the drawn grasp proposals: G′1:K = Frank(c′ñ) where the prompt instructs the VLM
to rank based on each grasp’s potential contacts with neighboring objects. Finally, the grasp ranked
best by the VLM G′1 is selected and sent to our motion primitive for robot execution.

4 Experiments

In this section, we compare the open-ended grounding capabilities of OWG vs. previous zero-shot
methods in indoor cluttered scenes (Sec. 4.1). Then, we demonstrate its potential for open-world
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grasping both in simulation and in hardware (Sec. 4.2). Finally, we investigate the effect of several
components of our methodology via ablation studies (Sec. 4.3).

4.1 Open-Ended Grounding in Cluttered Scenes

Method Found.
Model Name Attribute Spatial

Relation
Visual

Relation
Semantic
Relation Affordance Multi-

hop Avg.

ReCLIP [72] CLIP [42] 71.4 57.7 27.3 47.4 46.2 62.5 20.8 47.6±17.0
RedCircle [43] CLIP [42] 52.4 53.9 18.2 42.1 46.2 18.9 12.5 34.8±16.4

FGVP [44] CLIP [42] 50.0 53.9 33.3 36.9 53.8 43.8 29.1 43.0±9.3
FGVP∗ [44] CLIP [42] 65.7 65.4 33.3 42.1 69.2 56.2 29.1 51.8±15.4

QWEN-VL-2 [31] QWEN [31] 64.3 60.9 52.4 44.0 47.1 11.9 42.1 46.1±15.9

SoM [26] GPT-4v [73] 54.8 42.3 54.6 57.9 53.9 62.5 45.8 53.1±6.4
OWG (Ours) GPT-4v [73] 85.7 80.8 75.8 73.7 76.9 93.8 79.2 80.8±6.4

Table 1: Zero-shot referring segmentation - mIoU(%) results per language
instruction type for cluttered indoor scenes from OCID [40].

In order to evaluate
the open-ended po-
tential of OWG for
grounding, we cre-
ate a small subset of
OCID-VLG test split
[39], which we man-
ually annotate for a
broad range of grasping instructions. As we strive for zero-shot usage in open scenes, we
mostly experiment with previous visual prompting techniques for large-scale VLMs, such as CLIP
[43, 44, 72], as well as the recent Set-of-Mark prompting methodology for GPT-4v [26], which con-
stitutes the basis of our method. We also include comparisons with open-source visually-grounded
LVLM QWEN-VL-2 [31]. Please see Appendix C for details on the test dataset, baseline imple-
mentations and more comparative ablations and qualitative results.

We observe that both CLIP-based visual prompting techniques and open-source LVLMs are decent
in object-based but fail to relate objects from the visual prompts. Even GPT-4v-based SoM prompt-
ing method is not directly capable of handling cluttered tabletop scenes from depth cameras, as is
evident by the 53.1% averaged mIoU across all query types. Overall, our OWG-grounder achieves
an averaged mIoU score of 80.8%, which corresponds to a 27.7% delta from the second best ap-
proach. Importantly, OWG excels at semantic and affordance-based queries, something which is
essential in human-robot interaction applications but is missing from modern vision-language mod-
els. We identify two basic failure modes: a) the LVLM confused the target description with another
object, e.g. due to same appearance or semantics, and b) the LVLM reasons correctly about the
object and where it is roughly located, but chooses a wrong numeric ID to refer to it.

4.2 Open-World Grasping Robot Experiments Pick the human-like toy Pass the flashlight that
is behind the blue cereal box

Grasp the left juice box I want something to wash my hair

Figure 4: Open-ended language-guided
grasping trials in Gazebo (top) and real robot
(bottom), in isolated (left column) and clut-
tered (right column) scenes.

In this section we wish to evaluate the full stack of
OWG, incl. grounding, grasp planning and grasp
ranking via contact reasoning, in scenarios that emu-
late open-world grasping challenges. To that end, we
conduct experiments in both simulation and in hard-
ware, where in each trial we randomly place 5-15
objects in a tabletop and instruct the robot to grasp
an object of interest. We conduct trials in two scenar-
ios, namely: a) isolated, where all objects are scat-
tered across the tabletop, b) cluttered, where objects
are tightly packed together leading to occlusions and
rich contacts. We highlight that object-related query
trials contain distractor objects that share the same
category with the target object.

Baselines We compare with two baselines, namely:
a) CROG [39], an end-to-end referring grasp syn-
thesis model trained in OCID [40] scenes, and b)
SayCan-IM [12], an LLM-based zero-shot plan-
ning method that actualizes embodied reasoning via
chaining external modules for segmentation, grounding and grasp synthesis, while reasoning with
LLM chain-of-thoughts [74]. Our choice of baselines aims at showing the advantages of using an
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LVLM-based method vs. both implicit end-to-end approaches, as well as modular approaches that
rely solely on LLMs to reason, with visual processing coming through external tools. See details in
baseline implementations in Appendix B.

Setup CROG [39] SayCan-IM [12] OWG (Ours)

seen unseen seen unseen seen unseen

Simulation (×50)
-Isolated 66.0 36.0 62.0 60.0 78.0 82.0
-Cluttered 38.0 22.0 48.0 56.0 62.0 66.0

Real-World (×6)
-Isolated 50.0 16.6 66.6 33.3 83.3 66.6
-Cluttered 16.6 0.0 16.6 16.6 50.0 50.0

Table 2: Averaged success rates (%) over simulated
and real-world grasping trials. The × represents num-
ber of trials per cell.

Implementation Our robot setup consists of
two UR5e arms with Robotiq 2F-140 parallel
jaw grippers and an ASUS Xtion depth cam-
era. We conduct 50 trials per scenario in the
Gazebo simulator [75], using 30 unique object
models. For real robot experiments, we conduct
6 trials per scenario having the initial scenes as
similar as possible between baselines. In both
SayCan-IM and our method, Mask-RCNN [76]
is utilized for 2D instance segmentation while
GR-ConvNet [38] pretrained in Jacquard [52] is used as the grasp synthesis module. Our robotic
setup is illustrated in Fig. 4, while more details can be found in Appendix B. To investigate general-
ization performance, all method are evaluated in both scenarios, in two splits: (i) seen, where target
objects and queries are present in the method’s training data or in-context prompts, and (ii) unseen,
where the instruction refers to objects that do not appear in CROG’s training data or SayCan-IM’s
in-context prompts. Averaged success rate per scenario is reported, where a trial is considered suc-
cessful if the robot grasps the object and places it in a pre-defined container position.

Figure 5: Distribution of failures across grounding and
grasping in Gazebo grasping trials for isolated (left) and
cluttered (right). OWG improves performance across
both modes in both setups and test splits.

Results We observe that the supervised
method CROG struggles when used at un-
seen data, in both scenarios. In con-
trary, both SayCan-IM and OWG demon-
strate immunity to seen/unseen objects, il-
lustrating the strong zero-shot capabilities
of LLM-based approaches, which can nat-
urally generalize the concepts of object
categories/attributes/relations from language.
SayCan-IM is limited by the external vision
models and hence struggles in cluttered scenes,
where its detector sometimes fails to perceive
the target object, resulting in lower final success rates compared to OWG, especially in the real-
world experiments. OWG consistently outperforms both baselines both in simulation and in the
real robot, with an ∼ 15% and ∼ 35% improved averaged success rate respectively. In Fig. 5,
we illustrate the decomposition of failures across grounding and grasping in our baselines for 25
Gazebo trials per scenario, where we automatically test for the target object’s grounding results
alongside success rate. We observe that OWG consistently reduces the error rates in both grasping
and grasping compared to the baselines in all scenarios and test splits. We believe that these results
are encouraging for the future of LVLMs in robot grasping.

4.3 Ablation Studies

In out ablations we wish to answer the following questions: a) What is the bottleneck introduced by
the segmentation model in the open-ended grounding performance?, b) What are the contributions
of all the different visual prompt elements considered in our work?, and c) What is the contribution
of the LVLM-based grasp planning and ranking in robot grasping experiments? The grounding
ablations for the first two questions are organized in Table 3, while for the latter in Table 4.

Instance segmentation bottleneck We compare the averaged mIoU of our OWG grounder in a
subset of our OCID-VLG evaluation data for three different segmentation methods and ground-truth
masks. We employ: a) SAM [37], b) the RPN module of the open-vocabulary detector ViLD [28],
and c) the RGB-D two-stage instance segmentation method UOIS [77], where we also provide the
depth data as part of the input. ViLD-RPN and UOIS both achieve a bit above 70%, which is a
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∼ 15% delta from ground-truth masks, while SAM offers the best baseline with a 10.8% delta from
ground-truth. Implementation details and related visualizations in Appendix C.

Method mIoU (%)

OWG (w/ Ground-Truth Mask) 86.6
-w/o reference 23.2
-w/o number overlay 54.6
-w/o high-res 61.3
-w/o self-consistency 70.9
-w/ box 74.6
-w/o CoT prompt 77.6
-w/o mask fill 81.1

SAM [37] 75.8
ViLD-RPN [78] 72.9
UOIS [77] 71.1

Table 3: Grounding ablation studies.

Visual prompt components Visual prompt design
choices have shown to significantly affect the perfor-
mance of LVLMs. We ablate all components of our
grounding prompt and observe the contribution of each
one via its averaged mIoU in the same subset as above
(see details in Appendix A.2). The most important
prompt component is the reference image, provided
alongside the marked image. Due to the high clutter of
our test scenes, simply highlighting marks and label IDs
in a single frame, as in SoM [26] hinders the recogni-
tion capabilities of the LVLM, with a mIoU drop from
86.6% to 23.2%. Further decluttering the marked image
also helps, with overlaying the numeric IDs, using high-resolution images and highlighting the in-
side of each region mask being decreasingly important. Surprisingly, also marking bounding boxes
leads to a 12% mIoU drop compared to avoiding them, possibly due to occlusions caused by lots
of boxes in cluttered areas. Finally, self-consistency and chain-of-thought prompting components
that were added also improve LVLM’s grounding performance by ∼ 16 and 10% respectively, by
ensembling multiple responses and enforcing step-by-step reasoning.

Method Isolated Cluttered
OWG 84.0 68.0

-w/o planning 80.0 46.0
-w/o grasp ranking 82.0 60.0
-w/o both 80.0 42.0

Table 4: Averaged success rates (%) over
50 simulated grasping trials per scenario.

Grasp-Related Ablations We quantify the contribution
of our grasp planning and ranking stages in the open-
world grasping pipeline, by replicating trials as in the pre-
vious section and potentially skipping one or both of these
stages. As we see in Table 4, the effect of these compo-
nents is not so apparent in isolated scenes, as objects are
not obstructed by surroundings and hence most proposed
grasps are feasible. The effect becomes more prominent in the cluttered scenario, where the lack of
grasp planning leads to a success rate decrease of 22%. This is because without grasp planning the
agent attempts to grasp the target immediately, which almost always leads to a collision that makes
the grasp fail. Grasp ranking is less essential, as a lot of contact-related information is existent in
the grasp quality predictions of our grasp synthesis network. However, it still provides an important
boost in final success rate (8% increase). When skipping both stages, the agent’s performance drops
drastically in cluttered scenes, as it is unable to recover from grasp failures, and hence always fails
when the first attempted grasp was not successful.

5 Conclusion, Limitations & Future Work

In this paper we introduce OWG, a novel system formulation for tackling open-world grasping. Our
focus is on combining LVLMs with segmentation and grasp synthesis models, and visually prompt
the LVLM to ground, plan and reason about the scene and the object grasps. Our works sets a
foundation for enabling robots to ground open-ended language input and close-the-loop for effective
grasp planning and contact reasoning, leading to significant improvements over previous zero-shot
approaches, as demonstrated by empirical evaluations, ablation studies and robot experiments.

Limitations First, as OWG is a modular approach, it suffers from error cascading effects intro-
duced by the segmentor and grasp synthesis models. However, improvements in these areas mean
direct improvement to the OWG pipeline. Second, we currently use 4-DoF grasps to communicate
them visually to GPT-4v, which constrains grasping to single view. In the future we would like to
integrate 6-DoF grasp detectors and explore new prompting schemes to aggregate and rank grasp
information visually. Third, our results suggest that LVLMs still struggle to ground complex object
relationships. More sophisticated prompting schemes beyond marker overlaying, or instruct-tuning
in grasp-related data, might be a future direction for dealing with this limitation.
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